June 2013 - al-Fadhil Attar

Private Website Simple Berbasis Pendidikan


Hot

Saturday 29 June 2013

Sejarah Kalkulus

June 29, 2013 0
Assallamualaikum, sahabat rif. Dalam perkuliahan, kita pasti menemukan mata kuliah Kalkulus, dimana terdapat materi turunan, integral dan lain sebagainya. Nah, sekarang saya akan memposting mengenai Sejarah Kalkulus tersebut.


Kalkulus
Kalkulus (Bahasa Latin: calculus, artinya “batu kecil”, untuk menghitung) adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret takterhingga. Kalkulus adalah ilmu mengenai perubahan, sebagaimana geometri adalah ilmu mengenai bentuk dan aljabar adalah ilmu mengenai pengerjaan untuk memecahkan persamaan serta aplikasinya. Kalkulus memiliki aplikasi yang luas dalam bidang-bidang sains, ekonomi, dan teknik; serta dapat memecahkan berbagai masalah yang tidak dapat dipecahkan dengan aljabar elementer.

Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral yang saling berhubungan melalui teorema dasar kalkulus. Pelajaran kalkulus adalah pintu gerbang menuju pelajaran matematika lainnya yang lebih tinggi, yang khusus mempelajari fungsi dan limit, yang secara umum dinamakan analisis matematika.

Sejarah Kalkulus
Sejarah perkembangan kalkulus bisa ditilik pada beberapa periode zaman, yaitu zaman kuno, zaman pertengahan, dan zaman modern.

Pada periode zaman kuno, beberapa pemikiran tentang kalkulus integral telah muncul, tetapi tidak dikembangkan dengan baik dan sistematis. Perhitungan volume dan luas yang merupakan fungsi utama dari kalkulus integral bisa ditelusuri kembali pada Papirus Moskwa Mesir (1800 SM) di mana orang Mesir menghitung volume piramida terpancung. Archimedes mengembangkan pemikiran ini lebih jauh dan menciptakan heuristik yang menyerupai kalkulus integral.

Pada zaman pertengahan, matematikawan India, Aryabhata, menggunakan konsep kecil takterhingga pada tahun 499 dan mengekspresikan masalah astronomi dalam bentuk persamaan diferensial dasar. Persamaan ini kemudian mengantar Bhaskara II pada abad ke-12 untuk mengembangkan bentuk awal turunan yang mewakili perubahan yang sangat kecil takterhingga dan menjelaskan bentuk awal dari “Teorema Rolle“. Sekitar tahun 1000, matematikawan Irak Ibn al-Haytham (Alhazen) menjadi orang pertama yang menurunkan rumus perhitungan hasil jumlah pangkat empat, dan dengan menggunakan induksi matematika, dia mengembangkan suatu metode untuk menurunkan rumus umum dari hasil pangkat integral yang sangat penting terhadap perkembangan kalkulus integral. Pada abad ke-12, seorang Persia Sharaf al-Din al-Tusi menemukan turunan dari fungsi kubik, sebuah hasil yang penting dalam kalkulus diferensial.  Pada abad ke-14, Madhava, bersama dengan matematikawan-astronom dari mazhab astronomi dan matematika Kerala, menjelaskan kasus khusus dari.. deret Taylor, yang dituliskan dalam teks Yuktibhasa.

Pada zaman modern, penemuan independen terjadi pada awal abad ke-17 di Jepang oleh matematikawan seperti Seki Kowa. Di Eropa, beberapa matematikawan seperti John Wallis danIsaac Barrow memberikan terobosan dalam kalkulus. James Gregory membuktikan sebuah kasus khusus dari teorema dasar kalkulus pada tahun 1668.

Leibniz dan Newton mendorong pemikiran-pemikiran ini bersama sebagai sebuah kesatuan dan kedua orang ilmuwan tersebut dianggap sebagai penemu kalkulus secara terpisah dalam waktu yang hampir bersamaan. Newton mengaplikasikan kalkulus secara umum ke bidang fisikasementara Leibniz mengembangkan notasi-notasi kalkulus yang banyak digunakan sekarang.

Ketika Newton dan Leibniz mempublikasikan hasil mereka untuk pertama kali, timbul kontroversi di antara matematikawan tentang mana yang lebih pantas untuk menerima penghargaan terhadap kerja mereka. Newton menurunkan hasil kerjanya terlebih dahulu, tetapi Leibniz yang pertama kali mempublikasikannya. Newton menuduh Leibniz mencuri pemikirannya dari catatan-catatan yang tidak dipublikasikan, yang sering dipinjamkan Newton kepada beberapa anggota dari Royal Society.

Pemeriksaan secara terperinci menunjukkan bahwa keduanya bekerja secara terpisah, dengan Leibniz memulai dari integral dan Newton dari turunan. Sekarang, baik Newton dan Leibniz diberikan penghargaan dalam mengembangkan kalkulus secara terpisah. Adalah Leibniz yang memberikan nama kepada ilmu cabang matematika ini sebagai kalkulus, sedangkan Newton menamakannya “The science of fluxions“.

Sejak itu, banyak matematikawan yang memberikan kontribusi terhadap pengembangan lebih lanjut dari kalkulus. Kalkulus menjadi topik yang sangat umum di SMA dan universitas zaman modern. Matematikawan seluruh dunia terus memberikan kontribusi terhadap perkembangan kalkulus.

Para Penemu dan Peneliti
SIR ISAAC NEWTON
Sir Isaac Newton FRS (lahir di Woolsthorpe-by-Colsterworth, Lincolnshire, 4 Januari 1643 – meninggal 31 Maret 1727 pada umur 84 tahun; KJ: 25 Desember 1642 – 20 Maret 1727) adalah seorang fisikawan, matematikawan, ahli astronomi, filsuf alam, alkimiawan, dan teolog yang berasal dari Inggris. Ia merupakan pengikut aliran heliosentris dan ilmuwan yang sangat berpengaruh sepanjang sejarah, bahkan dikatakan sebagai bapak ilmu fisika klasik.

Karya bukunya Philosophiæ Naturalis Principia Mathematica yang diterbitkan pada tahun 1687 dianggap sebagai buku paling berpengaruh sepanjang sejarah sains. Buku ini meletakkan dasar-dasar mekanika klasik. Dalam karyanya ini, Newton menjabarkan hukum gravitasi dan tiga hukum gerak yang mendominasi pandangan sains mengenai alam semesta selama tiga abad. Newton berhasil menunjukkan bahwa gerak benda di Bumi dan benda-benda luar angkasa lainnya diatur oleh sekumpulan hukum-hukum alam yang sama. Ia membuktikannya dengan menunjukkan konsistensi antara hukum gerak planet Kepler dengan teori gravitasinya. Karyanya ini akhirnya menyirnakan keraguan para ilmuwan akan heliosentrisme dan memajukan revolusi ilmiah.

Dalam bidang mekanika, Newton mencetuskan adanya prinsip kekekalan momentum dan momentum sudut. Dalam bidang optika, ia berhasil membangun teleskop refleksi yang pertama dan mengembangkan teori warna berdasarkan pengamatan bahwa sebuah kaca prisma akan membagi cahaya putih menjadi warna-warna lainnya. Ia juga merumuskan hukum pendinginan dan mempelajari kecepatan suara.

Dalam bidang matematika pula, bersama dengan karya Gottfried Leibniz yang dilakukan secara terpisah, Newton mengembangkan kalkulus diferensial dan kalkulus integral. Ia juga berhasil menjabarkan teori binomial, mengembangkan "metode Newton" untuk melakukan pendekatan terhadap nilai nol suatu fungsi, dan berkontribusi terhadap kajian deret pangkat.

Sampai sekarang pun Newton masih sangat berpengaruh di kalangan ilmuwan. Sebuah survei tahun 2005 yang menanyai para ilmuwan dan masyarakat umum di Royal Society mengenai siapakah yang memberikan kontribusi lebih besar dalam sains, apakah Newton atau Albert Einstein, menunjukkan bahwa Newton dianggap memberikan kontribusi yang lebih besar.

GOTTFRIED WILHEM LEIBNIZ
Gottfried Wilhem Leibniz atau kadangkala dieja sebagai Leibnitz atau Von Leibniz (1 Juli (21 Juni menurut tarikh kalender Julian 1646 – 14 November 1716) adalah seorang filsuf Jerman keturunan Sorbia dan berasal dari Sachsen. Ia terutama terkenal karena faham Théodicée bahwa manusia hidup dalam dunia yang sebaik mungkin karena dunia ini diciptakan oleh Tuhan Yang Sempurna. Faham Théodicée ini menjadi terkenal karena dikritik dalam buku Candide karangan Voltaire.

Selain seorang filsuf, ia adalah ilmuwan, matematikawan, diplomat, ahli fisika, sejarawan dan doktor dalam hukum duniawi dan hukum gereja. Ia dianggap sebagai Jiwa Universalis zamannya dan merupakan salah seorang filsuf yang paling berpengaruh pada abad ke-17 dan ke-18. Kontribusinya kepada subyek yang begitu luas tersebar di banyak jurnal dan puluhan ribu surat serta naskah manuskrip yang belum semuanya diterbitkan. Sampai sekarang masih belum ada edisi lengkap mengenai tulisan-tulisan Leibniz dan dengan ini laporan lengkap mengenai prestasinya belum dapat dilakukan.
Leibniz lahir di Leipzig dan meninggal dunia di Hannover.

JOHN WALLIS
John Wallis (23 November 1616 – 28 Oktober 1703) adalah matematikawan Inggris yang berperan dalam perkembangan kalkulus. Ia juga menciptakan simbol ∞ untuk bilangan tak terhingga. Asteroid 31982 Johnwallis dinamai dari namanya. John Brehaut Wallis lahir di Ashford, Kent, anak ketiga dari Reverend John Wallis dan Joanna Chapman.









ISAAC BARROW
Isaac Barrow (Oktober 1630 - 4 Mei 1677) adalah sarjana dan matematikawan Inggris yang biasanya diberikan penghargaan atas peran awalnya dalam perkembangan kalkulus, terutama untuk penemuan teorema dasar kalkulus. Karyanya terpusat pada sifat-sifat tangen. Barrow adalah yang pertama kali menghitung tangen kurva kappa. Isaac Newton adalah mahasiswa Barrow, dan Newton kemudian mengembangkan kalkulus dalam bentuk modern. Nama kawah di Bulan, kawah Barrow, berasal dari namanya.





Pengaruh Penting
Walau beberapa konsep kalkulus telah dikembangkan terlebih dahulu di Mesir, Yunani, Tiongkok, India, Iraq, Persia, dan Jepang, penggunaaan kalkulus modern dimulai di Eropa pada abad ke-17 sewaktu Isaac Newton dan Gottfried Wilhelm Leibniz mengembangkan prinsip dasar kalkulus. Hasil kerja mereka kemudian memberikan pengaruh yang kuat terhadap perkembangan fisika.

Aplikasi kalkulus diferensial meliputi perhitungan kecepatan dan percepatan, kemiringan suatu kurva, dan optimalisasi. Aplikasi dari kalkulus integral meliputi perhitungan luas, volume,panjang busur, pusat massa, kerja, dan tekanan. Aplikasi lebih jauh meliputi deret pangkat dan deret Fourier.

Kalkulus juga digunakan untuk mendapatkan pemahaman yang lebih rinci mengenai ruang, waktu, dan gerak. Selama berabad-abad, para matematikawan dan filsuf berusaha memecahkan paradoks yang meliputi pembagian bilangan dengan nol ataupun jumlah dari deret takterhingga. Seorang filsuf Yunani kuno memberikan beberapa contoh terkenal seperti paradoks Zeno. Kalkulus memberikan solusi, terutama di bidang limit dan deret takterhingga, yang kemudian berhasil memecahkan paradoks tersebut. 

Aplikasi
CANGKANG NAUTILUS
Kalkulus digunakan di setiap cabang sains fisik, sains komputer, statistik, teknik, ekonomi, bisnis, kedokteran, kependudukan, dan di bidang-bidang lainnya. Setiap konsep di mekanika klasik saling berhubungan melalui kalkulus. Massa dari sebuah benda dengan massa jenis yang tidak diketahui,momen inersia dari suatu objek, dan total energi dari sebuah objek dapat ditentukan dengan menggunakan kalkulus.

Dalam subdisiplin listrik dan magnetisme, kalkulus dapat digunakan untuk mencari total fluks dari sebuah medan elektromagnetik . Contoh historis lainnya adalah penggunaan kalkulus di hukum gerak Newton, dinyatakan sebagai laju perubahan yang merujuk pada turunan: Laju perubahanmomentum dari sebuah benda adalah sama dengan resultan gaya yang bekerja pada benda tersebut dengan arah yang sama.

Bahkan rumus umum dari hukum kedua Newton: Gaya = Massa × Percepatan, menggunakan perumusan kalkulus diferensial karena percepatan bisa dinyatakan sebagai turunan dari kecepatan. Teori elektromagnetik Maxwell dan teori relativitas Einstein juga dirumuskan menggunakan kalkulus diferensial.

Pola spiral logaritma cangkang Nautilus adalah contoh klasik untuk menggambarkan perkembangan dan perubahan yang berkaitan dengan kalkulus.

Referensi:
Astutisetyoningsih.blogspot.com
Read More

Sejarah Statistika

June 29, 2013 0
Assallamualaikum, sahabat rif. Tak bosan-bosannya saya berbagi ilmu dengan sahabat sekalian. Pada kesempatan kali ini saya akan memberi postingan mengenai Sejarah yaitu Sejarah Statistika.


Statistika
Statistika adalah ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi, dan mempresentasikan data. Singkatnya, statistika adalah ilmu yang berkenaan dengan data. Istilah 'statistika' (bahasa Inggris: statistics) berbeda dengan 'statistik' (statistic). Statistika merupakan ilmu yang berkenaan dengan data, sedang statistik adalah data, informasi, atau hasil penerapan algoritma statistika pada suatu data. Dari kumpulan data, statistika dapat digunakan untuk menyimpulkan atau mendeskripsikan data; ini dinamakan statistika deskriptif. Sebagian besar konsep dasar statistika mengasumsikan teori probabilitas. Beberapa istilah statistika antara lain: populasi, sampel, unit sampel, dan probabilitas.

Statistika banyak diterapkan dalam berbagai disiplin ilmu, baik ilmu-ilmu alam ,misalnya astronomi dan biologi maupun ilmu-ilmu sosial (termasuk sosiologi dan psikologi), maupun di bidang bisnis, ekonomi, dan industri. Statistika juga digunakan dalam pemerintahan untuk berbagai macam tujuan; sensus penduduk merupakan salah satu prosedur yang paling dikenal. Aplikasi statistika lainnya yang sekarang popular adalah prosedur jajak pendapat atau polling (misalnya dilakukan sebelum pemilihan umum), serta jajak cepat (perhitungan cepat hasil pemilu) atau quick count. Di bidang komputasi, statistika dapat pula diterapkan dalam pengenalan pola maupun kecerdasan buatan. 

Sejarah Statistika
Penggunaan istilah statistika berakar dari istilah istilah dalam bahasa latin modern statisticum collegium ("dewan negara") dan bahasa Italia statista ("negarawan" atau "politikus").

Gottfried Achenwall (1749) menggunakan Statistik dalam bahasa Jerman untuk pertama kalinya sebagai nama bagi kegiatan analisis data kenegaraan, dengan mengartikannya sebagai "ilmu tentang negara (state)". Pada awal abad ke-19 telah terjadi pergeseran arti menjadi "ilmu mengenai pengumpulan dan klasifikasi data". Sir John Sinclair memperkenalkan nama (Statistics) dan pengertian ini ke dalam bahasa Inggris. Jadi, statistika secara prinsip mula-mula hanya mengurus data yang dipakai lembaga-lembaga administratif dan pemerintahan. Pengumpulan data terus berlanjut, khususnya melalui sensus yang dilakukan secara teratur untuk memberi informasi kependudukan yang berubah setiap saat.

Pada abad ke-19 dan awal abad ke-20 statistika mulai banyak menggunakan bidang-bidang dalam matematika, terutama peluang. Cabang statistika yang pada saat ini sangat luas digunakan untuk mendukung metode ilmiah, statistika inferensi, dikembangkan pada paruh kedua abad ke-19 dan awal abad ke-20 oleh Ronald Fisher (peletak dasar statistika inferensi), Karl Pearson (metode regresi linear), dan William Sealey Gosset (meneliti problem sampel berukuran kecil). Penggunaan statistika pada masa sekarang dapat dikatakan telah menyentuh semua bidang ilmu pengetahuan, mulai dari astronomi hingga linguistika. Bidang-bidang ekonomi, biologi dan cabang-cabang terapannya, serta psikologi banyak dipengaruhi oleh statistika dalam metodologinya. Akibatnya lahirlah ilmu-ilmu gabungan seperti ekonometrika, biometrika (atau biostatistika), dan psikometrika.

Meskipun ada pihak yang menganggap statistika sebagai cabang dari matematika, tetapi sebagian pihak lainnya menganggap statistika sebagai bidang yang banyak terkait dengan matematika melihat dari sejarah dan aplikasinya. Di Indonesia, kajian statistika sebagian besar masuk dalam fakultas matematika dan ilmu pengetahuan alam, baik di dalam departemen tersendiri maupun tergabung dengan matematika.

Awal Perkembangan Statistika Secara Umum
Perkembangan statistika diawali sebagai suatu ilmu yang membahas cara-cara mengumpulkan angka sebagai hasil pengamatan menjadi bentuk yang lebih mudah dipahami.  Menurut Murray R. Spiegel, PhD. (1961) statistika berasal dari kata “status” yang berarti negara.  Sehingga pada awalnya statistika berkaitan dengan ilmu untuk angka-angka (keterangan) atas perintah raja suatu negara, yang ingin mengetahui kekayaan negaranya seperti jumlah penduduk, hewan piaraan, hasil pertanian, dan modal.  Contoh tertua mengenai hal ini dapat diambil dari zaman Kaisar Agustus yang membuat pernyataan bahwa seluruh dunia harus dikenai pajak, sehingga setiap orang harus melapor kepada statistikawan terdekat (pengumpul pajak).  Peristiwa lain di dalam sejarah yang dapat dikemukakan ialah sewaktu William si Penakluk memerintahkan mengadakan pencacahan jiwa dan kekayaan di seluruh wilayah Inggris untuk pengumpulan pajak dan tugas militer.  Semua pengamatan dicatat di dalam sebuah buku yang dikenal dengan Domesday Book.

Dari keperluan semacam ini timbullah teknik pencatatan angka-angka pengamatan dalam bentuk daftar dan grafik. Bagian statistika yang membicarakan cara mengumpulkan dan menyederhanakan angka-angka pengamatan ini dikenal sebagai statistika deskriptif.Statistika deskriptif dapat berkembang tanpa memerlukan dasar matematika yang kuat, selain kecermatan dalam teknik berhitung.

Sejak tahun 1700-an analisis data yang dilakukan secara deskriptif berdasarkan tabel-tabel frekuensi, rataan, dan ragam untuk sampel (contoh) ukuran besar.  Kemudian pada tahun 1800-an merupakan awal penggunaan grafik-grafik untuk penyajian data, seperti histogram, sejalan dengan penemuan sebaran (kurva) Normal. Florence Nightengale (1820-1920) adalah seorang perawat yang terkenal dengan inovasi di bidang ilmu perawatan merupakan pelopor dalam penyajian data secara grafik. Selama perang Crimean, Nightengale mengumpulkan data dan membuat sistem pencatatan. Dari data tersebut dapat ditentukan tingkat mortalitas yang dapat menunjukkan hasil perbaikan kondisi kesehatan yang cenderung menurunkan tingkat kematian. Selanjutnya data-data tersebut disajikan dalam bentuk grafik yang merupakan suatu inovasi statistika di masa tersebut. 

Dalam statistika deskriptif tidak ada perbedaan antara yang diperoleh dari sampel dengan populasinya, dan apa yang dihitung dari sampel digunakan untuk menandai populasi.  Pada taraf selanjutnya orang tidak puas hanya mengumpulkan angka-angka pengamatan saja. Mereka juga tidak puas bahwa yang diperoleh dari sampel digunakan untuk mencirikan populasi. Timbullah usaha-usaha untuk memperbaiki kesimpulan dalam melakukan ramalan-ramalan populasi berdasarkan angka-angka statistik yang dikumpulkan dari sampel tersebut. Bagian ilmu yang membahas cara-cara mengambil kesimpulan berdasarkan angka-angka pengamatan ini dinamakan statistika induktif.  Perkembangan statistik induktif tidak lepas dari pengetahuan mengenai peluang, maka ada baiknya kita lihat terlebih dahulu sejarah perkembangan ilmu peluang yang mendasari statistika induktif.

Konsep dasar
Dalam mengaplikasikan statistika terhadap permasalahan sains, industri, atau sosial, pertama-tama dimulai dari mempelajari populasi. Makna populasi dalam statistika dapat berarti populasi benda hidup, benda mati, ataupun benda abstrak. Populasi juga dapat berupa pengukuran sebuah proses dalam waktu yang berbeda-beda, yakni dikenal dengan istilah deret waktu.

Melakukan pendataan (pengumpulan data) seluruh populasi dinamakan sensus. Sebuah sensus tentu memerlukan waktu dan biaya yang tinggi. Untuk itu, dalam statistika seringkali dilakukan pengambilan sampel (sampling), yakni sebagian kecil dari populasi, yang dapat mewakili seluruh populasi. Analisis data dari sampel nantinya digunakan untuk menggeneralisasi seluruh populasi.

Jika sampel yang diambil cukup representatif, inferensial (pengambilan keputusan) dan simpulan yang dibuat dari sampel dapat digunakan untuk menggambarkan populasi secara keseluruhan. Metode statistika tentang bagaimana cara mengambil sampel yang tepat dinamakan teknik sampling.

Analisis statistik banyak menggunakan probabilitas sebagai konsep dasarnya hal terlihat banyak digunakannya uji statistika yang mengambil dasar pada sebaran peluang. Sedangkan matematika statistika merupakan cabang dari matematika terapan yang menggunakan teori probabilitas dan analisis matematika untuk mendapatkan dasar-dasar teori statistika.

Ada dua macam statistika, yaitu statistika deskriptif dan statistika inferensial. Statistika deskriptif berkenaan dengan deskripsi data, misalnya dari menghitung rata-rata dan varians dari data mentah; mendeksripsikan menggunakan tabel-tabel atau grafik sehingga data mentah lebih mudah “dibaca” dan lebih bermakna. Sedangkan statistika inferensial lebih dari itu, misalnya melakukan pengujian hipotesis, melakukan prediksi observasi masa depan, atau membuat model regresi.

Statistika deskriptif berkenaan dengan bagaimana data dapat digambarkan dideskripsikan) atau disimpulkan, baik secara numerik (misalnya menghitung rata-rata dan deviasi standar) atau secara grafis (dalam bentuk tabel atau grafik), untuk mendapatkan gambaran sekilas mengenai data tersebut, sehingga lebih mudah dibaca dan bermakna.

Statistika inferensial berkenaan dengan permodelan data dan melakukan pengambilan keputusan berdasarkan analisis data, misalnya melakukan pengujian hipotesis, melakukan estimasi pengamatan masa mendatang (estimasi atau prediksi), membuat permodelan hubungan (korelasi, regresi, ANOVA, deret waktu),dan sebagainya.

Referensi:
Astutisetyoningsih.blogspot.com
Read More

Sejarah Aljabar

June 29, 2013 0
Assallamualaikum, sahabat rif. Dipelajaran Sekolah Menengah Pertama telah kita temukan pelajaran Aljabar, dan pelajaran tersebut lumayan rumit juga. Nah, sekarang saya akan memposting mengenai Sejarah Aljabar tersebut.


Aljabar
Aljabar (Algebra) adalah cabang matematika yang mempelajari struktur, hubungan dan kuantitas. Untuk mempelajari hal-hal ini dalam aljabar digunakan simbol (biasanya berupa huruf) untuk merepresentasikan bilangan secara umum sebagai sarana penyederhanaan dan alat bantu memecahkan masalah. Contohnya, x mewakili bilangan yang diketahui dan y bilangan yang ingin diketahui. Sehingga bila Andi mempunyai x buku dan kemudian Budi mempunyai 3 buku lebih banyak daripada Andi, maka dalam aljabar, buku Budi dapat ditulis sebagai y = x + 3. Dengan menggunakan aljabar, Anda dapat menyelidiki pola aturan aturan bilangan umumnya. Aljabar dapat diasumsikan dengan cara memandang benda dari atas, sehingga kita dapat menemukan pola umumnya.

Aljabar telah digunakan matematikawan sejak beberapa ribu tahun yang lalu. Sejarah mencatat penggunaan aljabar telah dilakukan bangsa Mesopotamia pada 3.500 tahun yang lalu. Nama Aljabar berasal dari kitab yang ditulis pada tahun 830 oleh Matematikawan Persia Muhammad ibn Musa al-Kwarizmi dengan judul ‘Al-Kitab al-Jabr wa-l-Muqabala’ (yang berarti "The Compendious Book on Calculation by Completion and Balancing"), yang menerapkan operasi simbolik untuk mencari solusi secara sistematik terhadap persamaan linier dan kuadratik. Sebelum munculnya karya yang berjudul ‘Hisab al-Jibra wa al Muqabalah yang ditulis oleh al-Khawarizmi itu, kata aljabar tidak pernah digunakan. Salah satu muridnya, Omar Khayyam menerjemahkan hasil karya Al-Khwarizmi ke bahasa Eropa. Beberapa abad yang lalu, ilmuwan dan matematikawan Inggris, Isaac Newton (1642-17 27) menunjukkan, kelakuan sesuatu di alam dapat dijelaskan dengan aturan atau rumus matematika yang melibatkan aljabar, yang dikenal sebagai Rumus Gravitasi Newton.

Aljabar bersama-sama dengan Geometri, Analisis dan Teori Bilangan adalah cabang-cabang utama dalam Matematika. Aljabar Elementer merupakan bagian dari kurikulun dalam sekolah menengah dan menyediakan landasan bagi ide-ide dasar untuk Ajabar secara keseluruhan, meliputi sifat-sifat penambahan dan perkalian bilangan, konsep variabel, definisi polinom, faktorisasi dan menentukan akar pangkat.

Sekarang ini istilah Aljabar mempunyai makna lebih luas daripada sekedar Aljabar Elementer, yaitu meliputi Ajabar Abstrak, Aljabar Linier dan sebagainya. Seperti dijelaskan di atas dalam aljabar, kita tidak bekerja secara langsung dengan bilangan melainkan bekerja dengan menggunakan simbol, variabel dan elemen-elemen himpunan. Sebagai contoh Penambahan dan Perkalian dipandang sebagai operasi secara umum dan definisi ini menuju pada struktur bilangan seperti Grup, Ring, dan Medan (fields).

Klasifikasi dari Aljabar
Aljabar secara garis besar dapat dibagi dalam kategori berikut ini:
  1. Aljabar Elementer, yang mempelajari sifat-sifat operasi pada bilangan riil direkam dalam simbol sebagai konstanta dan variabel, dan Aturan yang membangun ekspresi dan persamaan Matematika yang melibatkan simbol-simbol.(bidang ini juga mencakup materi yang biasanya diajarkan di sekolah menengah yaitu ‘Intermediate Algebra’ dan ‘college algebra’);
  2. Aljabar Abstrak, kadang-kadang disebut Aljabar Modern, yang mempelajari Struktur Aljabar semacam Grup, Ring dan Medan (fields) yang didefinisikan dan diajarkan secara aksiomatis;
  3. Aljabar Linier, yang mempelajari sifat-sifat khusus dari Ruang Vektor (termasuk Matriks);
  4. Aljabar Universal, yang mempelajari sifat-sifat bersama dari semua Struktur aljabar.
Dalam studi Aljabar lanjut, sistem aljabar aksiomatis semacam Grup, Ring, Medan dan Aljabar di atas sebuah Medan (algebras over a field) dipelajari bersama dengan telaah Struktur Geometri Natural yang kompatibel dengan Struktur Aljabar tersebut dalam bidang Topologi. 

Aljabar Elementer
Aljabar Elementer adalah bentuk paling dasar dari Aljabar, yang diajarkan pada siswa yang belum mempunyai pengetahuan Matematika apapun selain daripada Aritmatika Dasar. Meskipun seperti dalam Aritmatika, di mana bilangan dan operasi Aritmatika (seperti +, −, ×, ÷) muncul juga dalam Aljabar, tetapi disini bilangan seringkali hanya dinotasikan dengan simbol (seperti a, x, y). Hal ini sangat penting sebab: Hal ini mengijinkan kita menurunkan rumus umum dari aturan Aritmatika (seperti a + b = b + a untuk semua a dan b), dan selanjutnya merupakan langkah pertama untuk penelusuran yang sistematik terhadap sifat-sifat sistem bilangan riil.

Dengan menggunakan simbol, alih-alih menggunakan bilangan secara langsung, mengijinkan kita untuk membangun persamaan matematika yang mengandung variabel yang tidak diketahui (sebagai contoh “Carilah bilangan x yang memenuhi persamaan 3x + 1 = 10"). Hal ini juga mengijinkan kita untuk membuat relasi fungsional dari rumus-rumus matematika tersebut (sebagai contoh "Jika anda menjual x tiket, dan kemudian anda mendapat untung 3x - 10 rupiah, dapat dituliskan sebagai f(x) = 3x - 10, dimana f adalah fungsi, dan x adalah bilangan dimana fungsi f bekerja.").

Asal Mula Aljabar
Asal mula Aljabar dapat ditelusuri berasal dari bangsa Babilonia Kuno yang mengembangkan sistem aritmatika yang cukup rumit, dengan hal ini mereka mampu menghitung dalam cara yang mirip dengan aljabar sekarang ini. Dengan menggunakan sistem ini, mereka mampu mengaplikasikan rumus dan menghitung solusi untuk nilai yang tak diketahui untuk kelas masalah yang biasanya dipecahkan dengan menggunakan persamaan Linier, Persamaan Kuadrat dan Persamaan Linier tak tentu. Sebaliknya, bangsa Mesir, dan kebanyakan bangsa India, Yunani, serta Cina dalam milenium pertama sebelum masehi, biasanya masih menggunakan metode geometri untuk memecahkan persamaan seperti ini, misalnya seperti yang disebutkan dalam ‘the Rhind Mathematical Papyrus’, ‘Sulba Sutras’, ‘Euclid's Elements’, dan ‘The Nine Chapters on the Mathematical Art’. Hasil karya bangsa Yunani dalam Geometri, yang tertulis dalam kitab Elemen, menyediakan kerangka berpikir untuk menggeneralisasi formula matematika di luar solusi khusus dari suatu permasalahan tertentu ke dalam sistem yang lebih umum untuk menyatakan dan memecahkan persamaan, yaitu kerangka berpikir logika Deduksi.

Seperti telah disinggung di atas istilah ‘Aljabar’ berasal dari kata arab "al-jabr" yang berasal dari kitab ‘Al-Kitab al-Jabr wa-l-Muqabala’ (yang berarti "The Compendious Book on Calculation by Completion and Balancing"), yang ditulis oleh Matematikawan Persia Muhammad ibn Musa al-Kwarizmi. Kata ‘Al-Jabr’ sendiri sebenarnya berarti penggabungan (reunion). Matematikawan Yunani di jaman Hellenisme, Diophantus, secara tradisional telah mengenal konsep konsep aljabar, dan dikenal sebagai ‘Bapak Aljabar’,  hanya saja mereka tidak menggunakan istilah tersebut untuk teori yang mereka miliki. walaupun sampai sekarang masih diperdebatkan siapa sebenarnya yang berhak atas sebutan tersebut Al-Khwarizmi atau Diophantus?. Mereka yang mendukung Al-Khwarizmi menunjukkan fakta bahwa hasil karyanya pada prinsip reduksi masih digunakan sampai sekarang ini dan ia juga memberikan penjelasan yang rinci mengenai pemecahan persamaan kuadratik. Sedangkan mereka yang mendukung Diophantus menunjukkan Aljabar ditemukan dalam Al-Jabr adalah masih sangat elementer dibandingkan Aljabar yang ditemukan dalam ‘Arithmetica’, karya Diophantus. Matematikawan Persia yang lain, Omar Khayyam, membangun Aljabar Geometri dan menemukan bentuk umum geometri dari persamaan kubik. Matematikawan India Mahavira dan Bhaskara, serta Matematikawan Cina, Zhu Shijie, berhasil memecahkan berbagai macam persamaan kubik, kuartik, kuintik dan polinom tingkat tinggi lainnya.

Sejarah Aljabar
Sekitar tahun 300 S.M seorang sarjana Yunani kuno Euclid menulis buku yang berjudul "Elements". Dalam buku itu ia mencantumkan beberapa rumus aljabar yang benar untuk semua bilangan yang ia kembangkan dengan mempelajari bentuk-bentuk geometris. Perlu diketahui, orang-orang Yunani kuno menuliskan permasalahan-permasalahan secara lengkap jika mareka tidak dapat memecahkan permasalahan-permasalahan tersebut dengan menggunakan geometri. Metode inilah yang kemudian menjadikan kemampuan mereka untuk memecahkan permasalahan-permasalahan yang mendetail menjadi terbatasi.

Seiring dengan perkembangan zaman, Pada abad ke-3, Diophantus of Alexandria (250 M) menulis sebuah buku berjudul Aritmetika, dimana ia menggunakan simbol-simbol untuk bilangan-bilangan yang tidak diketahui dan untuk operasi-operasi seperti penambahan dan pengurangan. Sistemnya tidak sepenuhnya dalam bentuk simbol, tetapi berada diantara sistem Euclid dan apa yang digunakan sekarang ini.

Ketika Agama Islam mulai mucul abad ke 6 masehi, Peperangan atas nama agama untuk menundukkan daerah daerah Yahudi, Daerah Khatolik dan daerah tempat para umat Nasrani tinggal mulai gencar dilakukan oleh para pengikut muhammad. Sehingga pada tahun 641 M, bangsa Arab berhasil menguasai Alexandria dan menutup sekolah Yunani kuno terakhir. Namun ide-ide bangsa Yunani tetap dipertahankan bahkan dikembangkan, dan kemudian dibawa ke Eropa Barat setelah menduduki Spanyol pada tahun 747 M.

Bangsa arab yang sebelumnya belum pernah mendapatkan harta berupa Ilmu yang berlimpah di daerah jajahan, kemudian mulailah Bangsa Arab pertama kali mempertemukan ilmu yang berupa ide tersebut. Ketika mereka bertemu dengan dokter-dokter Yunani yang bekerja di kota-kota Arab.. Dua orang sarjana yang terkenal itu adalah Brahmagupta (598 - 660) dan Arya-Bhata (475 - 550). Brahmagupta adalah seorang astronom yang banyak menemukan ciri-ciri untuk luas dan volume benda padat. Sedangkan Arya-Bhata adalah seorang ilmuwan yang menciptakan tabel sinus (rasio-rasio istimewa) dan mengembangkan sebuah bentuk aljabar sinkopasi seperti sistem yang dibuat Diophantus.

Lambat laun bangsa Arab mulai mengenal teori yang dimiliki negara jajahan tersebut. Kemudian munculah tokoh yang sekarang ini dianggap sebagai penemu teor Aljabar, dialah Al-Khawarizmi , seorang muslim keturunan Usbekistan dan lahir pada tahun 780 masehi atau 194 Hijriah menurut kalender islam. Dibidang pendidikan, telah dibuktikan bahwa ialah seorang tokoh Islam yang berpengetahuan luas. Pengetahuan dan kemahiran al-Khawarizmi bukan hanya meliputi bidang syariat tetapi juga dalam bidang falsafah, logika, aritmetik, geometri, musik, sastra, sejarah Islam dan ilmu kimia. Keahlian dirinya pada ilmu matematika telah membawa dirinya menciptakan pemakaian Secans dan Tangens dalam penyelidikan trigonometri dan astronomi. Dalam usia muda ia telah bekerja di bawah pemerintahan Khalifah al-Ma’mun, daerah Bayt al-Hikmah di Baghdad. al-Khawarizmi bekerja dalam sebuah observatory atau tempat ilmu matematik dan astronomi yang ia gali lebih dalam. Al-Khawarizmi juga dipercayai memimpin perpustakaan khalifah.

Sumbangsih terbesar al-Khawarizmi adalah karyanya yang terangkum dalam buku bukunya yang berjudul sebagai berikut.
  1. Al-Jabr wa’l Muqabalah : Penciptaan pemakaian secans dan tangens dalam penyelidikan trigonometri dan astronomi.
  2. Hisab al-Jabr wa al-Muqabalah : Sebuah buku yang merangkum pemecahan dari permasalan masalah matematika yang sebagian telah dikemukakan bangsa Babilonia kuno. Dan Kebenarannya diakui oleh al-Khawarizmi .
  3. Sistem Nombor : Beliau telah memperkenalkan konsep sifat dan ia penting dalam sistem nombor pada zaman sekarang.
Antara cabang yang diperkanalkan oleh al-Khawarizmi seperti geometri, algebra, aritmetik dan lain-lain. Geometri merupakan cabang kedua dalam matematik yang dijabarkan oleh al-Khawarizmi lebih lanjut. Isi kandungan yang diperbincangkan dalam cabang kedua ini ialah asal-usul geometri yang mengacu pada Kitab al-Ustugusat[The Elements] hasil karya Euclid . Dari segi ilmu yang dimiliki geometri adalah ilmu yang mengkaji hal yang berhubung dengan magnitud dan sifat-sifat ruang. Ilmu Geometri inipada awalnya dipelajari sejak zaman firaun [2000SM]. Kemudian Thales Miletus memperkenalkan geometri Mesir kepada Grik sebagai satu sains dedukasi dalam kurun ke 6 SM. Seterusnya sarjana Islam seperti al-Khawarizmi telah menekuni kaedah sains dedukasi ini lebih jauh, terutamanya pada abad ke-9M. Algebra/aljabar merupakan nadi untuk matematik algebra.
  
Peristiwa lain yang penting adalah perkembangan lebih lanjut dari aljabar, terjadi pada pertengahan abad ke-16. Ide tentang determinan yang dikembangkan oleh Matematikawan Jepang Kowa Seki di abad 17, diikuti oleh Gottfried Leibniz sepuluh tahun kemudian, dengan tujuan untuk memecahkan Sistem Persamaan Linier secara simultan dengan menggunakan Matriks. Gabriel Cramer juga menyumbangkan hasil karyanya tentang Matriks dan Determinan di abad ke-18. Aljabar Abstrak dikembangkan pada abad ke-19, mula-mula berfokus pada teori Galois dan pada masalah keterkonstruksian (constructibility).

Tahap-tahap perkembangan Aljabar simbolik secara garis besar adalah sebagai berikut:
  1. Aljabar Retorik (Rhetorical algebra), yang dikembangkan oleh bangsa Babilonia dan masih mendominasi sampai dengan abad ke-16;
  2. Aljabar yang dikontruksi secara Geometri, yang dikembangkan oleh Matematikawan Vedic India dan Yunani Kuno;
  3. Syncopated algebra, yang dikembangkan oleh Diophantus dan dalam ‘the Bakhshali Manuscript’; dan
  4. Aljabar simbolik (Symbolic algebra), yang titik puncaknya adalah pada karya Leibniz.
Referensi:
Astutisetyoningsih.blogspot.com
Read More

Sejarah Teori Bilangan

June 29, 2013 0
Assallamualaikum, sahabat rif. Saat kita berkuliah di bidang matematika, kita pasti menemukan mata kuliah yang namanya Teori Bilangan. Nah, disini akan dipaparkan sedikit mengenai Sejarah Teori Bilangan.


Pengertian Teori Bilangan
Secara tradisional, teori bilangan adalah cabang dari matematika murni yang mempelajari sifat-sifat bilangan bulat dan mengandung berbagai masalah terbuka yang dapat mudah dimengerti sekalipun bukan oleh ahli matematika.

Dalam teori bilangan dasar, bilangan bulat dipelajari tanpa menggunakan teknik dari area matematika lainnya. Pertanyaan tentang sifat dapat dibagi, algoritma Euklidean untuk menghitung faktor persekutuan terbesar, faktorisasi bilangan bulat dalam bilangan prima, penelitian tentang bilangan sempurna dan kongruensi dipelajari di sini.

Pernyataan dasarnya adalah teorema kecil Fermat dan teorema Euler. Juga teorema sisa Tiongkok dan hukum keresiprokalan kuadrat. Sifat dari fungsi multiplikatif seperti fungsi Möbius dan fungsi phi Euler juga dipelajari. Demikian pula barisan bilangan bulat seperti faktorial dan bilangan Fibonacci.

Gambaran Sejarah Purbakala dari Matematika
Pada mulanya di zaman purbakala banyak bangsa-bangsa yang bermukim sepanjang sungai-sungai besar. Bangsa Mesir sepanjang sungai Nil di Afrika, bangsa Babilonia sepanjang sungai Tigris dan Eufrat, bangsa Hindu sepanjang sungai Indus dan Gangga, bangsa Cina sepanjang sungai Huang Ho dan Yang Tze. Bangsa-bangsa itu memerlukan keterampilan untuk mengendalikan banjir, mengeringkan rawa-rawa, membuat irigasi untuk mengolah tanah sepanjang sungai menjadi daerah pertanian untuk itu diperlukan pengetahuan praktis, yaitu pengetahuan teknik dan matematika bersama-sama.

Sejarah menunjukkan bahwa permulaan Matematika berasal dari bangsa yang bermukim sepanjang aliran sungai tersebut. Mereka memerlukan perhitungan, penanggalan yang bisa dipakai sesuai dengan perubahan musim. Diperlukan alat-alat pengukur untuk mengukur persil-persil tanah yang dimiliki. Peningkatan peradaban memerlukan cara menilai kegiatan perdagangan, keuangan dan pemungutan pajak. Untuk keperluan praktis itu diperlukan bilangan-bilangan.

Awal Bilangan
Bilangan pada awalnya hanya dipergunakan untuk mengingat jumlah, namun dalam perkembangannya setelah para pakar matematika menambahkan perbendaharaan simbol dan kata-kata yang tepat untuk mendefenisikan bilangan maka matematika menjadi hal yang sangat penting bagi kehidupan dan tak bisa kita pungkiri bahwa dalam kehidupan keseharian kita akan selalu bertemu dengan yang namanya bilangan, karena bilangan selalu dibutuhkan baik dalam teknologi, sains, ekonomi ataupun dalam dunia musik, filosofi dan hiburan serta banyak aspek kehidupan lainnya.

Bilangan dahulunya digunakan sebagai symbol untuk menggantikan suatu benda misalnya kerikil, ranting yang masing-masing suku atau bangsa memiliki cara tersendiri untuk menggambarkan bilangan dalam bentuk simbol diantaranya :
Simbol bilangan bangsa Babilonia:


Simbol bilangan bangsa Maya di Amerika pada 500 tahun SM:


Simbol bilangan menggunakan huruf Hieroglif yang dibuat bangsa Mesir Kuno:


Simbol bilangan bangsa Arab yang dibuat pada abad ke-11 dan dipakai hingga kini oleh umat Islam di seluruh dunia:


Simbol bilangan bangsa Yunani Kuno:


Simbol bilangan bangsa Romawi yang juga masih dipakai hingga kini:


Dalam perkembangan selanjutnya, pada abad ke-X ditemukanlah manuskrip Spanyol yang memuat penulisan simbol bilangan oleh bangsa Hindu-Arab Kuno dan cara penulisan inilah yang menjadi cikal bakal penulisan simbol bilangan yang kita pakai hingga saat ini, seperti yang tampak dalam gambar berikut:

Perkembangan Teori Bilangan
Teori Bilangan Pada suku Babilonia
Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik. Dinamai “Matematika Babilonia” karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik, Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.

Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an. Lempengan ditulis dalam tulisan paku ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.

Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.

Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar. Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.

Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desimal

Teori Bilangan Pada Suku Bangsa Mesir Kuno
Matematika Mesir merujuk pada matematika yang ditulis di dalam bahasa Mesir. Sejak peradaban helenistik matematika Mesir melebur dengan matematika Yunani dan Babilonia yang membangkitkan Matematika helenistik. Pengkajian matematika di Mesir berlanjut di bawah Khilafah Islam sebagai bagian dari matematika Islam, ketika bahasa Arab menjadi bahasa tertulis bagi kaum terpelajar Mesir.

Tulisan matematika Mesir yang paling panjang adalah Lembaran Rhind (kadang-kadang disebut juga “Lembaran Ahmes” berdasarkan penulisnya), diperkirakan berasal dari tahun 1650 SM tetapi mungkin lembaran itu adalah salinan dari dokumen yang lebih tua dari Kerajaan Tengah yaitu dari tahun 2000-1800 SM. Lembaran itu adalah manual instruksi bagi pelajar aritmetika dan geometri. Selain memberikan rumus-rumus luas dan cara-cara perkalian, pembagian, dan pengerjaan pecahan, lembaran itu juga menjadi bukti bagi pengetahuan matematika lainnya, termasuk bilangan komposit dan prima; rata-rata aritmetika, geometri, dan harmonik; dan pemahaman sederhana Saringan Eratosthenes dan teori bilangan sempurna (yaitu, bilangan 6). Lembaran itu juga berisi cara menyelesaikan persamaan linear orde satu juga barisan aritmetika dan geometri.

Naskah matematika Mesir penting lainnya adalah lembaran Moskwa, juga dari zaman Kerajaan Pertengahan, bertarikh kira-kira 1890 SM. Naskah ini berisikan soal kata atau soal cerita, yang barangkali ditujukan sebagai hiburan.

Teori Bilangan Pada Suku Bangsa India
Sulba Sutras (kira-kira 800–500 SM) merupakan tulisan-tulisan geometri yang menggunakan bilangan irasional, bilangan prima, aturan tiga dan akar kubik; menghitung akar kuadrat dari 2 sampai sebagian dari seratus ribuan; memberikan metode konstruksi lingkaran yang luasnya menghampiri persegi yang diberikan, menyelesaikan persamaan linear dan kuadrat; mengembangkan tripel Pythagoras secara aljabar, dan memberikan pernyataan dan bukti numerik untuk teorema Pythagoras.

Kira-kira abad ke-5 SM merumuskan aturan-aturan tata bahasa Sanskerta menggunakan notasi yang sama dengan notasi matematika modern, dan menggunakan aturan-aturan meta, transformasi, dan rekursi. Pingala (kira-kira abad ke-3 sampai abad pertama SM) di dalam risalah prosodynya menggunakan alat yang bersesuaian dengan sistem bilangan biner. Pembahasannya tentang kombinatorika bersesuaian dengan versi dasar dari teorema binomial. Karya Pingala juga berisi gagasan dasar tentang bilangan Fibonacci.

Pada sekitar abad ke 6 SM, kelompok Pythagoras mengembangkan sifat-sifat bilangan lengkap (perfect number), bilangan bersekawan (amicable number), bilangan prima (prime number), bilangan segitiga (triangular number), bilangan bujur sangkar (square number), bilangan segilima (pentagonal number) serta bilangan-bilangan segibanyak (figurate numbers) yang lain. Salah satu sifat bilangan segitiga yang terkenal sampai sekarang disebut triple Pythagoras, yaitu : a.a + b.b = c.c yang ditemukannya melalui perhitungan luas daerah bujur sangkar yang sisi-sisinya merupakan sisi-sisi dari segitiga siku-siku dengan sisi miring (hypotenosa) adalah c, dan sisi yang lain adalah a dan b. Hasil kajian yang lain yang sangat popular sampai sekarang adalah pembedaan bilangan prima dan bilangan komposit. Bilangan prima adalah bilangan bulat positif lebih dari satu yang tidak memiliki Faktor positif kecuali 1 dan bilangan itu sendiri. Bilangan positif selain satu dan selain bilangan prima disebut bilangan komposit. Catatan sejarah menunjukkan bahwa masalah tentang bilangan prima telah menarik perhatian matematikawan selama ribuan tahun, terutama yang berkaitan dengan berapa banyaknya bilangan prima dan bagaimana rumus yang dapat digunakan untuk mencari dan membuat daftar bilangan prima.

Dengan berkembangnya sistem numerasi, berkembang pula cara atau prosedur aritmetis untuk landasan kerja, terutama untuk menjawab permasalahan umum, melalui langkah-langkah tertentu, yang jelas yang disebut dengan algoritma. Awal dari algoritma dikerjakan oleh Euclid. Pada sekitar abad 4 S.M, Euclid mengembangkan konsep-konsep dasar geometri dan teori bilangan. Buku Euclid yang ke VII memuat suatu algoritma untuk mencari Faktor Persekutuan Terbesar dari dua bilangan bulat positif dengan menggunakan suatu teknik atau prosedur yang efisien, melalui sejumlah langkah yang terhingga. Kata algoritma berasal dari algorism. Pada zaman Euclid, istilah ini belum dikenal. Kata Algorism bersumber dari nama seorang muslim dan penulis buku terkenal pada tahun 825 M., yaitu Abu Ja’far Muhammed ibn Musa Al-Khowarizmi. Bagian akhir dari namanya (Al-Khowarizmi), mengilhami lahirnya istilah Algorism. Istilah algoritma masuk kosakata kebanyakan orang pada saat awal revolusi komputer, yaitu akhir tahun 1950.

Pada abad ke 3 S.M., perkembangan teori bilangan ditandai oleh hasil kerja Erathosthenes, yang sekarang terkenal dengan nama Saringan Erastosthenes (The Sieve of Erastosthenes). Dalam enam abad berikutnya, Diopanthus menerbitkan buku yang bernama Arithmetika, yang membahas penyelesaian persamaan didalam bilangan bulat dan bilangan rasional, dalam bentuk lambang (bukan bentuk/bangun geometris seperti yang dikembangkan oleh Euclid). Dengan kerja bentuk lambang ini, Diopanthus disebut sebagai salah satu pendiri aljabar.

Teori Bilangan Pada Masa Sejarah (Masehi)
Awal kebangkitan teori bilangan modern dipelopori oleh Pierre de Fermat (1601-1665), Leonhard Euler (1707-1783), J.L Lagrange (1736-1813), A.M. Legendre (1752-1833), Dirichlet (1805-1859), Dedekind (1831-1916), Riemann (1826-1866), Giussepe Peano (1858-1932), Poisson (1866-1962), dan Hadamard (1865-1963). Sebagai seorang pangeran matematika, Gauss begitu terpesona terhadap keindahan dan kecantikan teori bilangan, dan untuk melukiskannya, ia menyebut teori bilangan sebagai the queen of mathematics.

Pada masa ini, teori bilangan tidak hanya berkembang sebatas konsep, tapi juga banyak diaplikasikan dalam berbagai bidang ilmu pengetahuan dan teknologi. Hal ini dapat dilihat pada pemanfaatan konsep bilangan dalam metode kode baris, kriptografi, komputer, dan lain sebagainya

Tokoh-Tokoh Teori Bilangan
Pythagoras (582-496 SM) 
Pythagoras adalah seorang matematikawan dan filsuf Yunani yang paling dikenal melalui teoremanya. Dikenal sebagai “Bapak Bilangan”, dia memberikan sumbangan yang penting terhadap filsafat dan ajaran keagamaan pada akhir abad ke-6 SM.

Salah satu peninggalan Pythagoras yang terkenal adalah teorema Pythagoras, yang menyatakan bahwa kuadrat hipotenusa dari suatu segitiga siku-siku adalah sama dengan jumlah kuadrat dari kaki-kakinya (sisi-sisi siku-sikunya). Walaupun fakta di dalam teorema ini telah banyak diketahui sebelum lahirnya Pythagoras, namun teorema ini dikreditkan kepada Pythagoras karena ia yang pertama kali membuktikan pengamatan ini secara matematis.

Jamshid Al-Kashi (1380 M)
Al-Kashi terlahir pada 1380 di Kashan, sebuah padang pasir di sebelah utara wilayah Iran Tengah. Selama hidupnya, al-Kashi telah menyumbangkan dan mewariskan sederet penemuan penting bagi astronomi dan matematika.

Pecahan desimal yang digunakan oleh orang-orang Cina pada zaman kuno selama berabad-abad, sebenarnya merupakan pecahan desimal yang diciptakan oleh al-Kashi. Pecahan desimal ini merupakan salah satu karya besarnya yang memudahkan untuk menghitung aritmatika yang dia bahas dalam karyanya yang berjudul Kunci Aritmatika yang diterbitkan pada awal abad ke-15 di Samarkand.

Abu Ali Hasan Ibnu Al-Haytam (965 M)
Abu Ali Hasan Ibnu Al-Haytam lahir Basrah Irak, yang oleh masyarakat Barat dikenal dengan nama Alhazen. Al-Haytam adalah orang pertama yang mengklasifikasikan semua bilangan sempurna yang genap, yaitu bilangan yang merupakan jumlah dari pembagi-pembagi sejatinya, seperti yang berbentuk 2k-1(2k-1) di mana 2k-1 adalah bilangan prima. Selanjutnya Al-Haytam membuktikan bahwa bila p adalah bilangan prima, 1+(p-1)! habis dibagi oleh p.

Pierre de Fermat
Fermat menuliskan bahwa “I have discovered a truly remarkable proof which this margin is to small to contain”. Fermat juga hampir selalu menulis catatan kecil sejak tahun 1603, manakala ia pertama kali mempelajari Arithmetica karya Diophantus. Ada kemungkinan Fermat menyadari bahwa apa yang ia sebut sebagai remarkable proof ternyata salah, karena semua teorema yang dia nyatakan biasanya dalam bentuk tantangan yang Fermat ajukan terhadap matematikawan lain. Meskipun kasus khusus untuk n = 3 dan n = 4 ia ajukan sebagai tantangan (dan Fermat mengetahui bukti untuk kasus ini) namun teorema umumnya tidak pernah ia sebut lagi. Pada kenyataannya karya matematika yang ditinggalkan oleh Fermat hanya satu buah pembuktian. Fermat membuktikan bahwa luas daerah segitiga siku- siku dengan sisi bilangan bulat tidak pernah merupakan bilangan kuadrat. Jelas hal ini mengatakan bahwa tidak ada segitiga siku-siku dengan sisi rasional yang mempunyai luas yang sama dengan suatu bujursangkar dengan sisi rasional. Dalam simbol, tidak terdapat bilangan bulat x, y, z dengan sehingga bilangan kuadrat. Dari sini mudah untuk mendeduksi kasus n = 4, Teorema Fermat. Penting untuk diamati bahwa dalam tahap ini yang tersisa dari pembuktian Fermat Last Theorem adalah membuktikan untuk kasus n bilangan prima ganjil. Jika terdapat bilangan bulat x, y, z dengan maka jika n = pq, .

Kapankah angka nol ditemukan?
Zero = 0 = Empty = Kosong (Nol) Memang, kata dalam Bahasa Inggris ‘zero’ (nol) berasal dari bahasa Arab ‘sifr’, suatu terjemahan literal dari bahasa Sanskrit “shûnya” yang bermakna “kosong”. Runtutan keterkaitan bahasa dari masa ke masa: shûnya (Sanskrit) -> (Ancient Egypt/Babylonia) -> (Greek/Helenic) -> (Rome/Byzantium) – sifr (Arab) -> zero (English) -> nol; kosong (Indonesia). Nol asalnya dari India “shûnya” bukan cuma sebuah istilah, tapi juga konsep.

Sekitar tahun 300 SM orang babilonia telah memulai penggunaan dua buah baji miring, //, untuk menunjukkan sebuah tempat kosong, sebuah kolom kosong pada Abakus. Simbol ini memudahkan seseorang untuk menentukan letak sebuah symbol. Angka nol sangat berguna dan merupakan simbol yang menggambarkan sebuah tempat kosong dalam Abakus, sebuah kolom dengan batu-batu yang ditempatkan di dasar. Kegunaannya hanya untuk memastikan bahwa butiran-butiran tersebut berada di tempat yang tepat, angka nol tidak memiliki nilai numeric tersendiri.

Pada komputer nol ini dapat merusak sistem, karena nol diartikan tidak ada. Berapapun bilangan dikalikan dengan nol hasilnya tidak ada. Nah inilah yang membuat bingung dalam operasi perhitungan.
Perhatikan contoh ini :
0=0 ( nol sama dengan nol, benar)
0 x3=0 x 89 (nol sama-sama dikalikan dengan sebuah bilangan, karena juga akan bernilai nol)
(0 x 3)/0= (0 x 89)/0 (sebuah bilangan dibagi dengan bilangan yang sama, akan bernilai satu)
3=89 (???, hasil ini yang membuat bingung)

Walaupun demikian sebenarnya nol itu hebat, jika tidak ditemukan angka nol tulisan satu juta dalam bilangan romawi ditulis apa?? Bisa-bisa selembar kertas tidak sampai untuk hanya memberikan symbol satu juta itu. Bisa dibayangkan jika nol tidak ada. Banyak kekuatan yang terkandung dalam angka ini. Nol adalah perangkat paling penting dalam matematika. Namun berkat sifat matematis dan filosofis yang aneh pada angka nol, ia akan berbenturan dengan filsafat barat.

Angka nol berbenturan dengan salah satu prinsip utama filsafat barat, sebuah dictum yang akar-akarnya terhujam dalam filsafat angka Phythagoras dan nilai pentingnya tumbuh dari paradoks Zeno. seluruh cosmos Yunani didirikan di atas pilar: tak ada kekosongan.

Kosmos Yunani yang dis=ciptakan oleh Phytagoras, Aristoteles dan Ptolemeus masih lama bertahan setelah keruntuhan peradaban Yunani. Dalam kosmos ini tak ada ketiadaaan. Oleh karena itu, hampir sepanjang dua milinium orang-orang barat tak bersedia menerima angka nol. Konsekuensinya sungguh menakutkan. Ketiadaan angka nol menghambat perkembangan matematika, menghalangi inovasi sains dan yang lebih berbahaya, mengacaukan sistem penanggalan.

Macam-macam bilangan
Bilangan Bulat adalah bilangan yang terdiri atas bilangan positif, bilangan nol, dan bilangan negatif.
Misal : ….-2,-1,0,1,2….

Bilangan asli adalah bilangan bulat positif yang diawali dari angka 1(satu) sampai tak terhingga.
Misal : 1,2,3….

Bilangan cacah adalah bilangan bulat positif yang diawali dari angka 0 (nol) sampai tak terhingga.
Misal : 0,1,2,3,….

Bilangan prima adalah bilangan yang tepat mempunyai dua faktor yaitu bilangan 1 (satu) dan bilangan itu sendiri.
Misal : 2,3,5,7,11,13,….. (1 bukan bilangan prima, karena mempunyai satu faktor saja).

Bilangan komposit adalah bilangan yang bukan 0, bukan 1 dan bukan bilangan prima.
Misal ; 4,6,8,9,10,12,….

Bilangan rasional adalah bilangan yang dinyatakan sebagai suatu pembagian antara dua bilangan bulat (berbentuk bilangan a/b, dimana a dan b merupakan bilangan bulat).
Misal: 1/2 ,2/(3 ),3/4….

Bilangan irrasional adalah bilangan yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat.
Misal: π, √3 , log 7 dan sebagainya.

Bilangan riil adalah bilangan yang merupakan penggabungan dari bilangan rasional dan bilangan irrasional
Misal: 1/2 √(2 ),1/3 √5,1/4 π,2/3 log √2 dan sebagainya.

Bilangan imajiner (bilangan khayal) adalah bilangan yang ditandai dengan i, bilangan imajiner i dinyatakan sebagai √(-1). Jadi, jika i = √(-1) maka i2= -1
Misal: √(-4)=⋯?
√(-4)=√(4×(-1) )
= √4×√(-1)
= 2 × i
= 2i
Jadi, √(-4)=2i.

Bilangan kompleks adalah bilangan yang merupakan penggabungan dari bilangan riil dan bilangan imajiner.
Misal; π√(-1)= πi
Log √(-1)=log⁡i

APLIKASI TEORI BILANGAN
  • ISBN (International Book Serial Number)
  • Fungsi hash
  • Kriptografi
  • Pembangkit bilangan acak-semu, dll.
ISBN
Kode ISBN terdiri dari 10 karakter, biasanya dikelompokkan dengan spasi atau garis, misalnya 0–3015–4561–9.

ISBN terdiri atas empat bagian kode:
  • Kode yang mengidentifikasikan bahasa,
  • Kode penerbit,
  • Kode unik untuk buku tersebut,
  • Karakter uji (angka atau huruf X (=10)).
  • Contoh: ISBN 0–3015–4561–8
0 : kode kelompok negara berbahasa Inggris,
3015 : kode penerbit
4561 : kode unik buku yang diterbitkan
8 : karakter uji.
       
Karakter uji ini didapatkan sebagai berikut:
1 × 0 + 2 × 3 + 3 × 0 + 4 × 1 + 5 × 5 + 6 × 4 + 7 × 5 + 8 × 6 + 9 × 1 = 151
Jadi, karakter ujinya adalah 151 mod 11 = 8. 
FUNGSI HASH
Tujuan: pengalamatan di memori
Bentuk: h(k) = k mod m                             
m : jumlah lokasi memori yang tersedia
k : kunci (integer)
h(k) : lokasi memori untuk record dengan kunci k 
Kolisi (collision) terjadi jika fungsi hash menghasilkan nilai h yang sama untuk k yang berbeda.
Jika terjadi kolisi, cek elemen berikutnya yang kosong.
Fungsi hash juga digunakan untuk me-locate elemen yang dicari.

KRIPTOGRAFI
Pesan: data atau informasi yang dapat dibaca dan dimengerti maknanya.
Nama lain: plainteks (plaintext)
                            
Pesan dapat berupa:  teks, gambar, audio, video.
Pesan ada yang dikirim atau disimpan di dalam media penyimpanan.
Cipherteks (ciphertext): pesan yang telah disandikan sehingga tidak memiliki makna lagi.
Tujuan: agar pesan tidak dapat dimengerti maknanya oleh pihak lain.
   
Cipherteks harus dapat diubah kembali ke plainteks semula.
Contoh:
Plainteks:
Culik anak itu jam 11 siang
Cipherteks: t^$gfUi89rewoFpfdWqL:p[uTcxZ
Enkripsi (encryption): proses menyandikan plainteks menjadi ciphertek.
  
Dekripsi (decryption): Proses mengembalikan cipherteks menjadi plainteksnya.
Kriptografi (cryptography)
Dari Bahasa Yunani yang artinya “secret writing”
Definisi: kriptografi adalah ilmu dan seni untuk menjaga keamanan pesan.
Algoritma kriptografi (cipher)
  • Aturan untuk enkripsi dan dekripsi
  • Fungsi matematika yang digunakan untuk enkripsi dan dekripsi.
Kunci: parameter yang digunakan untuk transformasi enciphering dan dechipering
Kunci bersifat rahasia, sedangkan algoritma kriptografi tidak rahasia
Sudah digunakan di Yunani 400 BC
Alat yang digunakan: scytale

Aplikasi Kriptografi
  1. Pengiriman data melalui saluran  komunikasi (data encryption on motion).
  2. Penyimpanan data di dalam disk storage (data encryption at rest)
Data ditransmisikan dalam bentuk chiperteks. Di tempat penerima chiperteks dikembalikan lagi menjadi plainteks.

Data di dalam media penyimpanan komputer (seperti hard disk) disimpan dalam bentuk chiperteks. Untuk membacanya, hanya orang yang berhak yang dapat mengembalikan chiperteks menjadi plainteks.

Notasi Matematis
Misalkan:
          C = chiperteks
          P = plainteks dilambangkan
Fungsi enkripsi E memetakan P ke C,
          E(P) = C                                                                       
Fungsi dekripsi D memetakan C ke P,
          D(C) = P    
Dengan menggunakan kunci K, maka fungsi enkripsi dan dekripsi menjadi
          EK(P) = C                                                                      
          DK(C) = P                                                                     
Dan kedua fungsi ini memenuhi
          DK(EK(P)) = P

Jika kunci enkripsi sama dengan kunci dekripsi, maka sistem kriptografinya disebut sistem simetri atau sistem konvensional. Algoritma kriptografinya disebut algoritma simetri atau algoritma konvensional. Jika kunci enkripsi tidak sama dengan kunci dekripsi, maka sistem kriptografinya disebut sistem nirsimetri (asymmetric system)

Nama lain: sistem kriptografi kunci-publik
Karena, kunci enkripsi bersifat publik (public key) sedangkan kunci dekripsi bersifat rahasia (private key). Pengirim pesan menggunakan kunci publik si penerima pesan untuk mengenkripsi pesan. Penerima pesan mendekripsi pesan dengan kunci privatnya sendiri.

Referensi:
Astutisetyoningsih.blogspot.com
Read More

Friday 28 June 2013

Sejarah Matematika Secara Umum

June 28, 2013 4
Assallamualaikum, sahabat rif. Dalam kehidupan sehari-hari kita, tidak lepas dari adanya hitung menghitung. Cara hitung menghitung inilah yang disebut matematika. Trus, bagaimana dengan Sejarah Matematikanya? Nah, sekarang saya akan posting mengenai Sejarah Matematika Secara Umum.


Matematika adalah alat yang dapat membantu memecahkan berbagai permasalahan (dalam pemerintahan, industri, sains). Sejarah matematika adalah penyelidikan terhadap asal mula penemuan di dalam matematika dansedikit perluasannya, penyelidikan terhadap metode dan notasi matematika dimasa silam. Dalam perjalanan sejarahnya, matematika berperan membangun peradaban manusia sepanjang masa.

Kata "matematika" berasal dari kata μάθημα (máthema) dalam bahasa Yunani yang diartikan sebagai "sains, ilmu pengetahuan, atau belajar" juga μαθηματικός (mathematikós) yang diartikan sebagai "suka belajar".

Metode yang digunakan adalah eksperimen atau penalaran induktif dan penalaran deduktif. Penalaran induktif adalah penarikan kesimpulan setelah melihat kasus-kasus yang khusus. Kesimpulan penalaran induktif memiliki derajat kebenaran barang kali benar atau tidak perlu benar.

Sebelum zaman modern dan penyebaran ilmu pengetahuan ke seluruh dunia, contoh-contoh tertulis dari pengembangan matematika telah mengalami kemilau hanya di beberapa tempat. Tulisan matematika terkuno yang telah ditemukan adalah Plimpton322 (matematika Babilonia sekitar 1900 SM), Lembaran Matematika Rhind (Matematika Mesir sekitar 2000-1800 SM) dan Lembaran Matematika Moskwa (matematika Mesir sekitar 1890 SM). Semua tulisan itu membahas teorema yang umum dikenal sebagai teorema Pythagoras, yang tampaknya menjadi pengembangan matematika tertua dan paling tersebar luas setelah aritmetika dasar dan geometri.

Sumbangan matematikawan Yunani memurnikan metode-metode (khususnya melalui pengenalan penalaran deduktif dan kekakuan matematika di dalam pembuktian matematika) dan perluasan pokok bahasan matematika. Kata "matematika" berasal dari kata μάθημα (máthema) dalam bahasa Yunani yang diartikan sebagai "sains, ilmu pengetahuan, atau belajar" juga μαθηματικός (mathematikós) yang diartikan sebagai "suka belajar". Matematika Cina membuat sumbangan dini, termasuk notasi posisional. Sistem bilangan Hindu-Arab dan aturan penggunaan operasinya, digunakan hingga kini, mungkin dikembangakan melalui kuliah pada milenium pertama Masehi di dalam matematika India dan telah diteruskan ke Barat melalui matematika Islam. Matematika Islam, pada gilirannya, mengembangkan dan memperluas pengetahuan matematika ke peradaban ini. Banyak naskah berbahasa Yunani dan Arab tentang matematika kemudian diterjemahkan ke dalam bahasa Latin, yang mengarah pada pengembangan matematika lebih jauh lagi di Zaman Pertengahan Eropa.

Dari zaman kuno melalui Zaman Pertengahan, ledakan kreativitas matematika seringkali diikuti oleh abad-abad kemandekan. Bermula pada abad Renaisans Italia pada abad ke-16, pengembangan matematika baru, berinteraksi dengan penemuan ilmiah baru, dibuat pada pertumbuhan eksponensial yang berlanjut hingga kini.

Sejarah matematika dilihat Secara Geografis:
1. Mesopotamia
  • Menentukan system bilangan pertama kali
  • Menemukan system berat dan ukur
  • Tahun 2500 SM system desimal tidak lagi digunakan dan lidi diganti oleh notasi berbentuk baji.
2. Babilonia
  • Menggunakan sitem desimal dan π=3,125
  • Penemu kalkulator pertama kali
  • Mengenal geometri sebagai basis perhitungan astronomi
  • Menggunakan pendekatan untuk akar kuadrat
  • Geometrinya bersifat aljabaris
  • Aritmatika tumbuh dan berkembang baik menjadi aljabar retoris yang berkembang
  • Sudah mengenal teorema Pythagoras
3. Mesir Kuno
  • Sudah mengenal rumus untuk menghitung luas dan isi
  • Mengenal system bilangan dan symbol pada tahun 3100 SM
  • Mengenal tripel Pythagoras
  • Sitem angka bercorak aditif dan aritmatika
  • Tahun 300 SM menggunakan system bilangan berbasis 10
4. Yunani Kuno
  • Pythagoras membuktikan teorema Pythagoras secara matematis (terbaik)
  • Pencetus awal konsep nol adalah Al Khwarizmi
  • Archimedes mencetuskan nama parabola, yang artinya bagian sudut kanan kerucut
  • Hipassus penemu bilangan irrasional
  • Diophantus penemu aritmatika (pembahasan teori-teori bilangan yang isinya merupakan pengembangan aljabar yang dilakukan dengan membuat sebuah persamaan)
  • Archimedes membuat geometri bidang datar
  • Mengenal bilangan prima
5. India
  • Brahmagyupta lahir pada 598-660 Ad
  • Aryabtha (4018 SM) menemukan hubungan keliling sebuah lingkaran
  • Memperkenalkan pemakaian nol dan desimal
  • Brahmagyupta menemukan bilangan negatif
  • Rumus telah ada pada “Sulbasutra
  • Geometrinya sudah mengenal tripel Pythagoras, teorema Pythagoras, transformasi dan segitiga pascal
6. China
  • Mengenal sifat-sifat segitiga siku-siku tahun 3000 SM
  • Mengembangkan angka negatif, bilangan desimal, system desimal, system biner, aljabar, geometri, trigonometri dan kalkulus
  • Telah menemukan metode untuk memecahkan beberapa jenis persamaan yaitu persamaan kuadrat, kubikdan qualitik
  • Aljabarnya menggunakan system horner untuk menyelesaikan persamaan Kuadrat
Sejarah Matematika Berdasarkan Tokoh:
1. Thales (624-550 SM)
Dapat disebut matematikawan pertama yang merumuskan teorema atau proposisi, dimana tradisi ini menjadi lebih jelas setelah dijabarkan oleh Euclid. Landasan matematika sebagai ilmu terapan rupanya sudah diletakan oleh Thales sebelum muncul Pythagoras yang membuat bilangan.

2. Pythagoras (582-496 SM)
Pythagoras adalah orang yang pertama kali mencetuskan aksioma-aksioma, postulat-postulat yang perlu dijabarkan ter lebih dahulu dalam mengembangkan geometri. Pythagoras bukan orang yang menemukan suatu teorema Pythagoras namun dia berhasil membuat pembuktian matematis. Persaudaraan Pythagoras menemukan sebagai bilangan irrasional.

3. Socrates (427-347 SM)
Ia merupakan seorang filosofi besar dari Yunani. Dia juga menjadi pencipta ajaran serba cita, karena itu filosofinya dinamakan idealisme. Ajarannya lahir karena pergaulannya dengan kaum sofis. Plato merupakan ahli piker pertama yang menerima paham adanya alam bukan benda.

4. Ecluides (325-265 SM)
Euklides disebut sebagai “Bapak Geometri” karena menemuka teori bilangan dan geometri. Subyek-subyek yang dibahas adalah bentuk-bentuk, teorema Pythagoras, persamaan dalam aljabar, lingkaran, tangen,geometri ruang, teori proporsi dan lain-lain. Alat-alat temuan Eukluides antara lain mistar dan jangka.

5. Archimedes (287-212 SM)
Dia mengaplikasikan prinsip fisika dan matematika. Dan juga menemukan perhitungan π (pi) dalam menghitung luas lingkaran. Ia adalah ahli matematika terbesar sepanjang zaman dan di zaman kuno. Tiga kaaarya Archimedes membahas geometri bidang datar, yaitu pengukuran lingkaran, kuadratur dari parabola dan spiral.

6. Appolonius (262-190 SM)
Konsepnya mengenai parabola, hiperbola, dan elips banyak memberi sumbangan bagi astronomi modern. Ia merupakan seorang matematikawan tang ahli dalam geometri. Teorema Appolonius menghubungkan beberapa unsur dalam segitiga.

7. Diophantus (250-200 SM)
Ia merupakan “Bapak Aljabar” bagi Babilonia yang mengembangkan konsep-konsep aljabar Babilonia. Seorang matematikawan Yunani yang bermukim di Iskandaria. Karya besar Diophantus berupa buku aritmatika, buku karangan pertama tentang system aljabar. Bagian yang terpelihara dari aritmatika Diophantus berisi pemecahan kira-kira 130 soal yang menghasilkan persamaan-persamaan tingkat pertama.

Hubungan Filsafat Dengan Matematika
Matematika dan filsafat mempunyai sejarah keterikatan satu dengan yang lain sejak jaman Yunani Kuno. Matematika di samping merupakan sumber dan inspirasi bagi para filsuf, metodenya juga banyak diadopsi untuk mendeskripsikan pemikiran filsafat. Kita bahkan mengenal beberapa matematikawan yang sekaligus sebagai sorang filsuf, misalnya Descartes, Leibniz, Bolzano, Dedekind, Frege, Brouwer, Hilbert, Godel, and Weyl. Pada abad terakhir di mana logika yang merupakan kajian sekaligus pondasi matematika menjadi bahan kajian penting baik oleh para matematikawan maupun oleh para filsuf. Logika matematika mempunyai peranan hingga sampai era filsafat kontemporer di mana banyak para filsuf kemudian mempelajari logika. Logika matematika telah memberi inspirasi kepada pemikiran filsuf, kemudian para filsuf juga berusaha mengembangkan pemikiran logika misalnya “logika modal”, yang kemudian dikembangkan lagi oleh para matematikawan dan bermanfaat bagi pengembangan program komputer dan analisis bahasa. Salah satu titik krusial yang menjadi masalah bersama oleh matematika maupun filsafat misalnya persoalan pondasi matematika. Baik matematikawan maupun para filsuf bersama-sama berkepentingan untuk menelaah apakah ada pondasi matematika? Jika ada apakah pondasi itu bersifat tunggal atau jamak? Jika bersifat tunggal maka apakah pondasi itu? Jika bersifat jamak maka bagaimana kita tahu bahwa satu atau beberapa diantaranya lebih utama atau tidak lebih utama sebagai pondasi? Pada abad 20, Cantor diteruskan oleh Sir Bertrand Russell, mengembangkan teori himpunan dan teori tipe, dengan maksud untuk menggunakannya sebagai pondasi matematika. Namun kajian filsafat telah mendapatkan bahwa di sini terdapat paradoks atau inkonsistensi yang kemudian membangkitkan kembali motivasi matematikawan di dalam menemukan hakekat dari sistem matematika.

Dengan teori ketidak-lengkapan, akhirnya Godel menyimpulkan bahwa suatu sistem matematika jika dia lengkap maka pastilah tidak akan konsisten; tetapi jika dia konsisten maka dia patilah tidak akan lengkap. Hakekat dari kebenaran secara bersama dipelajari secara intensif baik oleh filsafat maupun matematika. Kajian nilai kebenaran secara intensif dipelajari oleh bidang epistemologi dan filsafat bahasa. Di dalam matematika, melalui logika formal, nilai kebenaran juga dipelajari secara intensif. Kripke, S. dan Feferman (Antonelli, A., Urquhart, A., dan Zach, R. 2007) telah merevisi teori tentang nilai kebenaran; dan pada karyanya ini maka matematika dan filsafat menghadapi masalah bersama. Di lain pihak, pada salah satu kajian filsafat, yaitu epistemologi, dikembangkan pula epistemologi formal yang menggunakan pendekatan formal sebagai kegiatan riset filsafat yang menggunakan inferensi sebagai sebagai metode utama. Inferensi demikian tidak lain tidak bukan merupakan logika formal yang dapat dikaitkan dengan teori permainan, pengambilan keputusan, dasar komputer dan teori kemungkinan.

Para matematikawan dan para filsuf secara bersama-sama masih terlibat di dalam perdebatan mengenai peran intuisi di dalam pemahaman matematika dan pemahaman ilmu pada umumnya. Terdapat langkah-langkah di dalam metode matematika yang tidak dapat diterima oleh seorang intuisionis. Seorang intuisionis tidak dapat menerima aturan logika bahwa kalimat “a atau b” bernilai benar untuk a bernilai benar dan b bernilai benar. Seorang intuisionis juga tidak bisa menerima pembuktian dengan metode membuktikan ketidakbenaran dari ingkarannya. Seorang intuisionis juga tidak dapat menerima bilangan infinit atau tak hingga sebagai bilangan yang bersifat faktual. Menurut seorang intuisionis, bilangan infinit bersifat potensial. Oleh karena itu kaum intuisionis berusaha mengembangkan matematika hanya dengan bilangan yang bersifat finit atau terhingga.

Banyak filsuf telah menggunakan matematika untuk membangun teori pengetahuan dan penalaran yang dihasilkan dengan memanfaatkan bukti-bukti matematika dianggap telah dapat menghasilkan suatu pencapaian yang memuaskan. Matematika telah menjadi sumber inspirasi yang utama bagi para filsuf untuk mengembangkan epistemologi dan metafisik. Dari pemikiran para filsuf yang bersumber pada matematika diantaranya muncul pemikiran atau pertanyaan: Apakah bilangan atau obyek matematika memang betul-betul ada? Jika mereka ada apakah di dalam atau di luar pikiran kita? Jika mereka ada di luar pikiran kita bagaimana kita bisa memahaminya? Jika mereka ada di dalam pikiran kita bagaimana kita bisa membedakan mereka dengan konsep-konsep kita yang lainnya? Bagaimana hubungan antara obyek matematika dengan logika? Pertanyaan tentang “ada” nya obyek matematika merupakan pertanyaan metafisik yang kedudukannya hampir sama dengan pertanyaan tentang keberadaan obyek-obyek lainnya seperti universalitas, sifat-sifat benda, dan nilai-nilai; menurut beberapa filsuf jika obyek-obyek itu ada maka apakah dia terkait dengan ruang dan waktu? Apakah dia bersifat aktual atau potensi? Apakah dia bersifat abstrak? Atau konkrit? Jika kita menerima bahwa obyek matematika bersifat abstrak maka metode atau epistemologi yang bagaimana yang mampu menjelaskan obyek tersebut? Mungkin kita dapat menggunakan bukti untuk menjelaskan obyek-obyek tersebut, tetapi bukti selalu bertumpu kepada aksioma. Pada akhirnya kita akan menjumpai adanya “infinit regress” karena secara filosofis kita masih harus mempertanyakan kebenaran dan keabsahan sebuah aksioma.

Hannes Leitgeb di (Antonelli, A., Urquhart, A., dan Zach, R. 2007) di “Mathematical Methods in Philosophy” telah menyelidiki penggunaan matematika di filsafat. Dia menyimpulkan bahwa metode matematika mempunyai kedudukan penting di filsafat. Pada taraf tertentu matematika dan filsafat mempunyai persoalan-persoalan bersama. Hannes Leitgeb telah menyelidiki aspek-aspek dalam mana matematika dan filsafat mempunyai derajat yang sama ketika melakukan penelaahan yatitu kesamaan antara obyek, sifat-sifat obyek, logika, sistem-sistem, makna kalimat, hukum sebab-akibat, paradoks, teori permainan dan teori kemungkinan. Para filsuf menggunakan logika sebab-akibat untuk untuk mengetahui implikasi dari konsep atau pemikirannya, bahkan untuk membuktikan kebenaran ungkapan-ungkapannya. Joseph N. Manago (2006) di dalam bukunya “Mathematical Logic and the Philosophy of God and Man” mendemonstrasikan filsafat menggunakan metode matematika untuk membuktikan Lemma bahwa terdapat beberapa makhluk hidup bersifat “eternal”. Makhluk hidup yang tetap hidup disebut bersifat eternal.

Referensi:
Astutisetyoningsih.blogspot.com
Read More